Abstract
Understanding the molecular mechanisms that determine a species' life history is important for predicting their susceptibility to environmental change. While specialist species with a narrow niche breadth (NB) maximize their fitness in their optimum habitat, generalists with broad NB adapt to multiple environments. The main objective of this study was to identify general transcriptional patterns that would distinguish bacterial strains characterized by contrasted NBs along a salinity gradient. More specifically, we hypothesized that genes encoding fitness-related traits, such as biomass production, have a higher degree of transcriptional regulation in specialists than in generalists, because the fitness of specialists is more variable under environmental change. By contrast, we expected that generalists would exhibit enhanced transcriptional regulation of genes encoding traits that protect them against cellular damage. To test these hypotheses, we assessed the transcriptional regulation of fitness-related and adaptation-related genes of 11 bacterial strains in relation to their NB and stress exposure under changing salinity conditions. The results suggested that transcriptional regulation levels of fitness- and adaptation-related genes correlated with the NB and/or the stress exposure of the inspected strains. We further identified a shortlist of candidate stress marker genes that could be used in future studies to monitor the susceptibility of bacterial populations or communities to environmental changes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have