Abstract

Bismuth vanadate (BiVO4), as the potential and prospective photocatalyst, has been limited by the issue of poor separation and transfer of charge carrier for photoelectrocatalytic (PEC) water oxidation. Here, a significant increase of surface injection efficiency for BiVO4 is realized by the rationally designed Ni doped FeOOH (Ni:FeOOH) layer growing on BiVO4 photoanode (Ni:FeOOH/BiVO4), in which doped Ni2+ can induce partial-charge of FeOOH to serve as ultrafast transfer channel for hole transfer and transportation at the semiconductor/electrolyte interface. In addition, the Ni:FeOOH/BiVO4 shows the ηsurface value of 81.6 %, which is 3.28-fold and 1.47-fold of BiVO4 and FeOOH/BiVO4, respectively. The photocurrent density of Ni:FeOOH/BiVO4 is 4.21 mA cm−2 at 1.23 V vs. RHE, with the onset potential cathodically shifting 237 mV over BiVO4 and a long-term stability for suppressing surface charge recombination. The UPS and UV–Vis spectra have confirmed the type-II band alignment between Ni:FeOOH and BiVO4 for promoting carrier transfer. This facile and effective spin-coating method could deposit oxygen evolution catalysts (OECs) availably onto photoanodes with enhanced PEC water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call