Abstract

In the present work Ti–Fe–Si and Ti–Fe–Si–X (X = Zr, Pd, Ge) glassy alloys are discussed as potential biomedical materials. Depending on composition and experimental conditions these alloys possess glassy, quasicrystalline or crystalline structure. The glassy state and crystallization behavior of the melt spun ribbons were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and the Hank's solution was used as simulated body fluid for corrosion tests. Ternary Ti–Fe–Si alloys near the Ti65Fe30Si5 eutectic point were prone to form quasicrystals if the cooling rate was not high enough to retain amorphous structure. The compositions on the steeper side of the eutectic point could be vitrified. The results indicate that small additions of Zr can have a positive effect on glass formation, while additions of Ge, Pd may have a detrimental effect by promoting crystallization. Ti–Fe–Si and Ti–Fe–Si–Zr alloys exhibited high corrosion properties, superior to that of pure Ti and most of Ti-based glassy alloys reported in the literature. Being free of Ni and Cu this group of alloys may be considered for possible biomedical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call