Abstract
Developing methods to directly transform C(sp3) -H bonds is crucial in synthetic chemistry due to their prevalence in various organic compounds. While conventional protocols have largely relied on transition metal catalysis, recent advancements in organocatalysis, particularly with radical NHC catalysis have sparked interest in the direct functionalization of "inert" C(sp3) -H bonds for cross C-C coupling with carbonyl moieties. This strategy involves selective cleavage of C(sp3) -H bonds to generate key carbon radicals, often achieved via hydrogen atom transfer (HAT) processes. By leveraging the bond dissociation energy (BDE) and polarity effects, HAT enables the rapid functionalization of diverse C(sp3)-H substrates, such as ethers, amines, and alkanes. This mini-review summarizes the progress in carbene organocatalytic functionalization of inert C(sp3)-H bonds enabled by HAT processes, categorizing them into two sections: 1) C-H functionalization involving acyl azolium intermediates; and 2) functionalization of C-H bonds via reductive Breslow intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.