Abstract

Reperfusion injury results from pathologies of cardiac myocyte physiology that develop when previously ischemic myocardium experiences a restoration of normal perfusion. Events in the development of reperfusion injury begin with the restoration of a proton gradient upon reperfusion, which then allows the sodium-proton exchanger (NHE) to increase flux, removing protons from the intracellular space while importing sodium. The resulting sodium overload drives increased reverse-mode sodium-calcium exchanger (NCX) activity, creating a secondary calcium overload that has pathologic consequences. One of the attempts to reduce reperfusion-related damage, NHE inhibition, has shown little clinical benefit, and only when NHE inhibitors are given prior to reperfusion. In an effort to further understand why NHE inhibitors have been largely unsuccessful, we employed a new mathematical cardiomyocyte model that we developed for the study of ischemia and reperfusion. Using this model, we simulated 20 minutes of ischemia and 10 minutes of reperfusion, while also simulating NHE inhibition by reducing NHE flux in our model by varying amounts and at different time points. In our simulations, when NHE inhibition is applied at the onset of reperfusion, increasing the degree of inhibition increases the peak sodium and calcium concentrations, as well as reducing intracellular pH recovery. When inhibition was instituted at earlier time points, some modest improvements were seen, largely due to reduced sodium concentrations prior to reperfusion. Analysis of all sodium flux pathways suggests that the sodium-potassium pump (NaK) plays the largest role in exacerbated sodium overload during reperfusion, and that reduced NaK flux is largely the result of impaired pH recovery. While NHE inhibition does indeed reduce sodium influx through that exchanger, the resulting prolongation of intracellular acidosis paradoxically increases sodium overload, largely mediated by impaired NaK function.

Highlights

  • Ischemia-reperfusion (IR) injury represents a constellation of pathological events that occur when previously ischemic myocardium experiences a restoration of normal tissue perfusion

  • Using a mathematical model that we developed to study ischemia and reperfusion in cardiac cells, we found that NHE inhibition produces more severe sodium overload, largely due to adverse consequences of the delayed pH recovery produced by NHE inhibition

  • The starting point for this work was a model previously published by Crampin and Smith (CS model) [8], which is a chargedifference implementation of the Luo-Rudy dynamic (LRd) guinea pig ventricular myocyte model [19] where membrane voltage is calculated based upon changes in ion concentrations rather than the transmembrane currents [20,21]

Read more

Summary

Introduction

Ischemia-reperfusion (IR) injury represents a constellation of pathological events that occur when previously ischemic myocardium experiences a restoration of normal tissue perfusion. IR injury, which can manifest as dangerous arrhythmias such as ventricular tachycardias and fibrillation, reduced myocardial force development, or an increased region of cell death, is likely to become even more clinically relevant in coming years owing to an aging population and the impact of aging on susceptibility to ischemia/reperfusion injury [1]. This acidosis is exacerbated by the rise in the partial pressure of carbon dioxide in the ischemic region [7,8]. Decreasing concentrations of ATP lead to decreased flux through the sodium-potassium pump (NaK) and increased current through ATP-inactivated potassium efflux channels (IK(ATP))

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call