Abstract

Rat C-CAM is a ubiquitous, transmembrane and carcino-embryonic antigen related cell adhesion molecule. The human counterpart is known as biliary glycoprotein (BGP) or CD66a. It is involved in different cellular functions ranging from intercellular adhesion, microbial receptor activity, signaling and tumor suppression. In the present study N-glyco-sylation of C-CAM immunopurified from rat liver was analyzed in detail. The primary sequence of rat C-CAM contains 15 potential N-glycosylation sites. The N-glycans were enzymatically released from glycopeptides, fluorescently labeled with 2-aminobenzamide, and separated by two-dimensional HPLC. Oligosaccharide structures were characterized by enzymatic sequencing and MALDI-TOF-MS. Mainly bi- and triantennary complex structures were identified. The presence of type I and type II chains in the antennae of these glycans results in heterogeneous glycosylation of C-CAM. Sialylation of the sugars was found to be unusual; bi- and triantennary glycans contained three and four sialic acid residues, respectively, and this linkage seemed to be restricted to the type I chain in the antennae. Approximately 20% of the detected sugars contain these unusual numbers of sialic acids. C-CAM is the first transmembrane protein found to be over-sialylated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call