Abstract

Recovering spatial-varying bi-directional reflectance distribution function (SVBRDF) from a few hand-held captured images has been a challenging task in computer graphics. Benefiting from the learned priors from data, single-image methods can obtain plausible SVBRDF estimation results. However, the extremely limited appearance information in a single image does not suffice for high-quality SVBRDF reconstruction. Although increasing the number of inputs can improve the reconstruction quality, it also affects the efficiency of real data capture and adds significant computational burdens. Therefore, the key challenge is to minimize the required number of inputs, while keeping high-quality results. To address this, we propose maximizing the effective information in each input through a novel co-located capture strategy that combines near-field and far-field point lighting. To further enhance effectiveness, we theoretically investigate the inherent relation between two images. The extracted relation is strongly correlated with the slope of specular reflectance, substantially enhancing the precision of roughness map estimation. Additionally, we designed the registration and denoising modules to meet the practical requirements of hand-held capture. Quantitative assessments and qualitative analysis have demonstrated that our method achieves superior SVBRDF estimations compared to previous approaches. All source codes will be publicly released.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.