Abstract

Bidirectional reflectance distribution function (BRDF) defines how light is reflected at a surface patch to produce the surface appearance, and thus, modeling/recognizing BRDFs is of great importance for various tasks in computer vision and graphics. However, such tasks are usually ill-posed or require heavy labor on image capture from different viewing angles. In this paper, we focus on the problem of remote BRDF type identification, by delivering novel techniques that capture and use a single light field image. The key is that a light field image captures both the spatial and angular information by a single shot, and the angular information enables effective samplings of the four-dimensional (4-D) BRDF. To implement the idea, we propose convolutional neural network based architectures for BRDF identification from a single 4-D light field image. Specifically, a StackNet and an Ang-convNet are introduced. The StackNet stacks the angular information of the light field images in an independent dimension, whereas the Ang-convNet uses angular filters to encode the angular information. In addition, we propose a large light field BRDF dataset containing 47 650 high-quality 4-D light field image patches, with different 3-D shapes, BRDFs, and illuminations. Experimental results show significant accuracy improvement in BRDF identification by using the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.