Abstract

The proliferation of internet communication channels has increased telecom fraud, causing billions of euros in losses for customers and the industry each year. Fraudsters constantly find new ways to engage in illegal activity on the network. To reduce these losses, a new fraud detection approach is required. Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic. Developing an effective strategy to combat fraud has become challenging. Although much effort has been made to detect fraud, most existing methods are designed for batch processing, not real-time detection. To solve this problem, we propose an online fraud detection model using a Neural Factorization Autoencoder (NFA), which analyzes customer calling patterns to detect fraudulent calls. The model employs Neural Factorization Machines (NFM) and an Autoencoder (AE) to model calling patterns and a memory module to adapt to changing customer behaviour. We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods. Our results show that our approach outperforms the baselines, with an AUC of 91.06%, a TPR of 91.89%, an FPR of 14.76%, and an F1-score of 95.45%. These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.