Abstract

Biologic therapy involving anti-tumor necrosis factor-α (anti-TNFα) agents has fundamentally changed the management of patients with immune-mediated inflammatory diseases, including rheumatoid arthritis, thus benefiting many patients. Nevertheless, the inability of some patients to achieve low disease activity or clinical remission remains a major concern. To address such concerns, next-generation anti-TNFα agents that differ from the immunoglobulin G-format anti-TNFα agents that have been used to date are being developed using antibody-engineering technology. Their unique design employing novel molecular characteristics affords several advantages, such as early improvement of clinical symptoms, optimization of drug bioavailability, enhancement of tissue penetration, and a reduction in side effects. This holds promise for a new paradigm shift in biologic therapy via the use of next-generation anti-TNFα agents. Ozoralizumab, a next-generation anti-TNFα agent that was recently approved in Japan, comprises a variable region heavy-chain format. It has a completely different structure from conventional therapeutic antibodies, such as a small molecular size, an albumin-binding module, and a unique format that produces an avidity effect. Ozoralizumab exhibited rapid biodistribution into joints, provided attenuation of Fcγ receptor-mediated inflammatory responses, and had a high binding affinity to TNFα in non-clinical studies. In clinical trials, ozoralizumab yielded an early improvement in clinical symptoms, a sustained efficacy for up to 52 weeks, and an acceptable tolerability in patients with rheumatoid arthritis. This review focuses on the results of pre-clinical and clinical trials for ozoralizumab and outlines the progress in next-generation antibody development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call