Abstract
We report on the application of MEMS and other microsystem technologies to photovoltaic (PV) cells, modules, and systems to take advantage of the numerous, significant beneficial effects that are realized as the size of solar cells decrease to sub-mm length scales. To demonstrate these effects, we have developed both crystalline silicon and III-V PV cells. These cells are from 2 to 20 microns thick and from 250 microns to one millimeter across. We have demonstrated conversion efficiencies of up to 14.9% for a 14 micron thick crystalline silicon PV cell. This work provides benefits for two broad PV applications: 1) highly flexible PV modules with conversion efficiencies greater than 20%, and 2) commercial/utility scale PV systems using moderate concentration flat plate modules with simple single-axis or coarse dual-axis tracking. Cost models indicate that systems based on these technologies can achieve unsubsidized energy costs of less than $0.10/kWh.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have