Abstract
Multiplex coherent anti-Stokes Raman spectroscopy (MCARS) is used to detect an explosive precursor material and two chemical warfare simulants. The spectral bandwidth of the femtosecond laser pulse used in these studies is sufficient to coherently and simultaneously drive all the vibrational modes in the molecule of interest. The research performed here demonstrates that MCARS has the capability to detect an explosive precursor (e.g., acetone) and hazardous materials, such as dimethyl methylphosphonate and 2-chloroethyl methyl sulfide (a sarin and a mustard gas chemical warfare simulant, respectively), with high specificity. Evidence shows that MCARS is capable of overcoming common the sensitivity limitations of spontaneous Raman scattering, thus allowing for the detection of the target material in milliseconds with standard USB spectrometers as opposed to seconds with intensified spectrometers. The exponential increase in the number of scattered photons suggests that the MCARS technique may be capable of overcoming range detection challenges common to spontaneous Raman scattering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have