Abstract

One of the goals in genetic research aims at identifying genes in biochemical and physiological processes to reveal genetic causes of rare and common diseases. Previous obstacles such as costly genotyping or sequencing have been reduced with the chip-based genomewide association studies (GWAS), now culminating with the latest toy—next generation sequencing methodologies (NGS). Concomitantly, computer technologies have evolved to an increasing use of multicore processors and distributed computing on large networks or grids. Although the technologies are not perfect, we now have unprecedented opportunities to perform genetic studies not possible just 10 years ago. The hype about these new technologies have been large, but all the promises have however not been fulfilled entirely as hoped for. Maybe because the hype has been more about the technologies as such, and less about their intended use. Millions of genetic variations have been detected by GWAS and NGS, but only a few have been linked to diseases—with almost no practical clinical significance. A major reason for this apparent deadlock is the inadequacy of the models used, which are based on the traditional “Mendelian” approach, in which one gene is supposed to have a main effect on a trait or a disease. However, most genes claimed to be associated with a disease have small effects and only a tiny fraction of the genetic variance has been captured. In this short notice it is argued, why this traditional approach should be supplemented or even replaced by modeling approaches in accordance with the complexity of biological systems, if we shall have any reasonable hope to understand the genetics behind any trait and bring genetics into practical use in medicine for common diseases (Costanzo et al., 2010; Ramanan et al., 2012).

Highlights

  • Edited by: Mariza De Andrade, Mayo Clinic, USA Reviewed by: William C

  • One of the goals in genetic research aims at identifying genes in biochemical and physiological processes to reveal genetic causes of rare and common diseases

  • Previous obstacles such as costly genotyping or sequencing have been reduced with the chip-based genomewide association studies (GWAS), culminating with the latest toy— generation sequencing methodologies (NGS)

Read more

Summary

Introduction

Edited by: Mariza De Andrade, Mayo Clinic, USA Reviewed by: William C. A major reason for this apparent deadlock is the inadequacy of the models used, which are based on the traditional “Mendelian” approach, in which one gene is supposed to have a main effect on a trait or a disease.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.