Abstract

Within just over a decade, human reprogramming‐based disease modeling has developed from a rather outlandish idea into an essential part of disease research. While iPSCs are a valuable tool for modeling developmental and monogenetic disorders, their rejuvenated identity poses limitations for modeling age‐associated diseases. Direct cell‐type conversion of fibroblasts into induced neurons (iNs) circumvents rejuvenation and preserves hallmarks of cellular aging. iNs are thus advantageous for modeling diseases that possess strong age‐related and epigenetic contributions and can complement iPSC‐based strategies for disease modeling. In this review, we provide an overview of the state of the art of direct iN conversion and describe the key epigenetic, transcriptomic, and metabolic changes that occur in converting fibroblasts. Furthermore, we summarize new insights into this fascinating process, particularly focusing on the rapidly changing criteria used to define and characterize in vitro‐born human neurons. Finally, we discuss the unique features that distinguish iNs from other reprogramming‐based neuronal cell models and how iNs are relevant to disease modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.