Abstract

Experiments and analyses of Hughes et al., JASA, 2009 are the origins of this research where we study the in-air waveform generation and propagation of the acoustic signals generated by cicadas. The sound generation is studied in a Newtonian model and the sound propagation is analysis by a numerical solver for viscous Burgers’ equation. The time histories from the tymbal surface velocities recorded by a laser Doppler vibrometer to the microphones positioned near the cicadas provide the test data. The Newtonian model describes the sound production systems process to generate the mating call signal structure. The numerical solver employs weighted essentially non-oscillatory (WENO) reconstruction to approximate the first and second derivatives of the semi-discrete operator. The WENO is utilizes due to the non-smooth structure of the cicada propagating waveform. Principally, the cicada mating signal in question has sharp transitions, since spectral methods tend to produce spurious oscillations as a result of attempting to represent a discontinuous function by a Fourier basis expansion. Thus, these analytical models are computationally tested to determine if the results capture the sound production and the transmission of the cicada mating calls. To verify the models are meaningful, the simulations are verified with real experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call