Abstract
We present a new scheme that combines essentially non-oscillatory (ENO) reconstructions together with monotone upwind schemes for scalar conservation laws interpolants. We modify a second-order ENO polynomial by choosing an additional point inside the stencil in order to obtain the highest accuracy when combined with the Harten–Osher reconstruction-evolution method limiter. Numerical experiments are done in order to compare a weighted version of the hybrid scheme to weighted essentially non-oscillatory (WENO) schemes with constant Courant–Friedrichs–Lewy number under relaxed step size restrictions. Our results show that the new scheme reduces smearing near shocks and corners, and in some cases it is more accurate near discontinuities compared with higher-order WENO schemes. The hybrid scheme avoids spurious oscillations while using a simple componentwise extension for solving hyperbolic systems. The new scheme is less damped than WENO schemes of comparable accuracy and less oscillatory than higher-order WENO schemes. Further experiments are done on multi-dimensional problems to show that our scheme remains non-oscillatory while giving good resolution of discontinuities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.