Abstract
The finite-difference time-domain (FDTD) method has been popularly utilized to analyze the electromagnetic (EM) wave propagation in dispersive media. Various dispersion models were introduced to consider the frequency-dependent permittivity, including Debye, Drude, Lorentz, quadratic complex rational function, complex-conjugate pole-residue, and critical point models. The Newmark-FDTD method was recently proposed for the EM analysis of dispersive media and it was shown that the proposed Newmark-FDTD method can give higher stability and better accuracy compared to the conventional auxiliary differential equation- (ADE-) FDTD method. In this work, we extend the Newmark-FDTD method to modified Lorentz medium, which can simply unify aforementioned dispersion models. Moreover, it is found that the ADE-FDTD formulation based on the bilinear transformation is exactly the same as the Newmark-FDTD formulation which can have higher stability and better accuracy compared to the conventional ADE-FDTD. Numerical stability, numerical permittivity, and numerical examples are employed to validate our work.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have