Abstract

Although oral drug delivery is the most common route of drug administration, the conventional polymeric nanocarriers exhibit a low drug loading capacity and low stability in the gastrointestinal (GI) environments. In this study, a newly designed silica-containing redox nanoparticle (siRNP) with reactive oxygen species (ROS) scavenging capacity is developed as an ideal oral nanocarrier for a novel hydrophobic anticancer compound BNS-22 to treat colitis-associated colon cancer in vivo. Crosslinking of silica moieties significantly enhances the stability under acidic conditions and improves BNS-22 loading capacity of siRNP compared to the conventional redox nanoparticle. After oral administration to mice, BNS-22-loaded siRNP (BNS-22@siRNP) remarkably improves bioavailability and colonic tumor distribution of BNS-22. As the result, BNS-22@siRNP significantly inhibits the tumor progression in colitis-associated colon cancer mice compared to other control treatments. It is noteworthy that no systemic absorption of siRNP carrier is observed after oral administration. Interestingly, orally administered BNS-22@siRNP significantly suppresses the adverse effects of BNS-22 owing to its ROS scavenging capacity, and no other noticeable toxicities are observed in mice treated with BNS-22@siRNP although siRNP is localized in the GI tract. Our results indicate that siRNP is a promising oral drug nanocarrier for cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.