Abstract

A new generation of ab initio electron-propagator self-energies recently superseded its antecedents' accuracy and computational efficiency in calculating vertical ionization energies (VIEs) of closed-shell molecules. (See J. Chem. Phys. 2021, 155, 204107, J. Chem. Theory Comput. 2022, 18, 4927, J. Chem. Phys. 2023, 159, 124109.) No adjustable parameters were introduced in the generation of reference orbitals or in the construction of self-energies. The same approach has been extended in this work to vertical electron affinities (VEAs). Calculations were performed on 24 conjugated, organic photovoltaic molecules with diverse functional groups. These molecules are considerably larger than those studied in previous tests on VIEs. Several new-generation self-energies produce mean absolute errors (MAEs) below 0.1 eV versus ΔCCSD(T) (i.e., total energy differences from the coupled-cluster singles, doubles, and perturbative triples method) VIEs and VEAs obtained with identical basis sets. A composite model employs cubically and quintically scaling algorithms and power-law basis-set extrapolations based on augmented double-triple or triple-quadruple ζ data. Its MAEs are near 0.05 eV versus benchmark values, with 0.03 eV error bars for the lowest VIE and the highest VEA of each molecule. A more efficient and equally accurate composite model for calculating VIEs avoids full transformations of electron repulsion integrals to the molecular orbital basis. High probability factors support the diagonal self-energy approximation, wherein Dyson orbitals are proportional to canonical, Hartree-Fock orbitals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.