Abstract

Ab initio electron propagator (EP) methods that are free of adjustable parameters in their self-energy formulae and in the generation of their orbital bases have been applied to the calculation of the lowest vertical ionization energies (VIEs) of the GW100 set. An improved set of standard results accompanied by irreducible representation assignments has been produced indirectly with coupled-cluster singles and doubles plus perturbative triples, i.e., CCSD(T), total energy differences at initial-state geometries reoptimized (in 28 cases) with the largest applicable point groups. The best compromises of accuracy and efficiency belong to a new generation of EP self-energies, several members of which may be derived from an intermediately normalized, Hermitized super-operator metric. The following diagonal self-energy methods are optimal: opposite-spin non-Dyson second order (os-nD-D2), approximately renormalized partial third order (P3+), approximately renormalized quasiparticle third order (Q3+), and non-Dyson approximately renormalized linear third order version B (nD-L3+B). Their mean absolute errors (MAEs) in electron volts and arithmetic scaling factors expressed in terms of occupied (O) and virtual (V) orbital dimensions are, respectively, (0.18, OV2), (0.14, O2V3), (0.15, O2V3), and (0.11, OV4). The 0.06 eV MAE for the non-diagonal, sixth-power (O2V4) Brueckner doubles, triple-field operator (BD-T1) EP method is exceeded by the 0.1 eV MAE with respect to experiments in seventh-power, ΔCCSD(T) calculations and indicates that BD-T1 may serve as a direct, spin-symmetry-conserving alternative in the generation of standard results for VIEs of larger, closed-shell molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call