Abstract
Newcastle disease virus (NDV) is a member of the genus Avulavirus of the Paramyxoviridae family of enveloped negative-stranded RNA viruses. The virus causes respiratory, neurological, or enteric disease in many species of birds, resulting in significant losses to the poultry industry worldwide. Strains of the virus are classified into three pathotypes based on the severity of disease in chickens. Avirulent strains that produce mild or asymptomatic infections are termed lentogenic, whereas virulent strains are termed velogenic. Strains of intermediate virulence are termed mesogenic. The envelope of NDV virions contains two types of glycoproteins, the hemagglutinin-neuraminidase (HN) and fusion (F) proteins. HN mediates three functions: 1) virus attachment to sialic acid-containing receptors; 2) neuraminidase activity that cleaves sialic acid from progeny virions to prevent self-aggregation; and, 3) complementation of the F protein in the promotion of fusion. Though it is widely accepted that cleavage of a fusion protein precursor is the primary determinant of NDV virulence, it is not the sole determinant. At least two other proteins, HN and the V protein, contribute to virulence. The V protein possesses interferon (IFN) antagonistic activity. The long-range goal of these studies is to understand the roles of HN and V in the differential virulence patterns exhibited by members of the NDV serotype. The first aim is to compare the IFN antagonistic activity of the V protein from a lentogenic and a mesogenic strain of the virus. The results of this study demonstrate that the V protein of the mesogenic strain Beaudette C (BC) exhibits greater IFN antagonistic activity than that of the lentogenic strain La Sota. Hence, the IFN antagonistic activities of the two V proteins correlate with their known virulence properties. Comparison of the C-terminal regions of La Sota and BC V proteins revealed four amino acid differences. The results demonstrate that the IFN antagonistic activity of La Sota V increases when any one of these residues is mutated to the corresponding residue in BC V. Conversely, the IFN antagonistic activity of BC V decreases when any one of these four residues is mutated to the corresponding residue in La Sota V. However, no single residue accounts for the difference in IFN antagonistic activity between the two V proteins. Also, analysis of La Sota V and BC V proteins with multiple mutations in these positions revealed that the four residues are collectively responsible for the difference in the IFN antagonistic activity of the two V proteins. Finally, characterization of chimeric La Sota/BC V proteins showed that the N-terminal region also contributes to the IFN antagonistic activity of V. Contrary to an earlier report, results described here demonstrate that the NDV V protein does not target STAT1 for degradation. However, both La Sota and BC V proteins target interferon regulatory factor (IRF)-7 for degradation and promote the conversion of full-length IRF-7 to a…
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have