Abstract
Costa Rica emerged from the seas as a new geological territory during the Miocene as an insular archipelago. It later became part of a continental area once it became a segment of Central America. Two dung beetle genera that colonized this new territory from South and North America, Canthidium and Onthophagus (Coleoptera: Scarabaeidae: Scarabaeinae), are here studied, in the first analysis of a volcanic paleo-archipelago, colonized from its emergence, and then later becoming terra firma. To assess their biodiversity distribution patterns, we analyzed the effect of biogeography, ecosystem origins, and body size on their altitudinal distribution patterns in three geographic basins of Costa Rica. Based on 32 years of collecting representing more than 158,000 specimens from 1017 localities, we undertook Generalized Linear Models of the two dung beetle genera to assess the effects of biodiversity and biogeographical distribution patterns. Canthidium and Onthophagus species ranged from 0 to 3000 m a.s.l., with an abrupt diversity decline at altitudes above 1500 m. Endemic species tended to show a higher altitudinal mean with a narrow altitudinal band distribution than non-endemic dung beetle species. Although there was a trend of decreasing species body size with the increase in altitude, such a trend depended on the distribution pattern of the species group. This possible insular-mediated endemicity mechanism has generated baffling biodiversity levels, considered the highest worldwide per unit area. Costa Rica is an expanse represented by a geographic overlap of two or more temporally disjunct areas and is not part of a natural transition zone. The effect of the insular Miocene origin of Costa Rica still pervades today, reflected by different insular syndromes shown by the dung beetle fauna. The importance of geological origins in generating biodiversity seems to have been an underrated criterion for conservation biology practices and should be considered ex officio.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have