Abstract
A full variable separation approach is firstly proposed for (2+1)-dimensional nonlinear systems by extending the well-established multilinear variable separation approach through the assumption that the expansion function is composed of full variable separated functions, namely, functions with respect to only one spacial or temporal argument. Taking the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, the Nizhnik-Novikov-Veselov equation and the dispersive long wave equation as examples, new full variable separation solutions are obtained with several arbitrary one dimensional functions. Especially, a common formula for some suitable physical quantities is discovered. By taking the arbitrary functions in different explicit expressions, the solutions can be used to describe plentiful novel nonlinear localized waves, which might be non-travelling waves as the spacial and temporal variables are fully separated into different functions. In particular, some new hybrid solitary waves, which can pulsate periodically, appear and/or decay with an adjustable lifetime, are discovered through the on-site interactions between a doubly periodic wave and a ring soliton, a four-humped dromion and a four-humped lump, and a doubly periodic wave and a cross type solitary wave. Nonlinear wave structures and their dynamical behaviours are discussed and graphically displayed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.