Abstract

AbstractAppropriate relative permeability curves for two‐phase flows through subsurface fractures remain unclear. We have conducted decane‐water and nitrogen‐water two‐phase flow experiments and simulations on real variable‐aperture fractures in rocks under confining stress. Experiments have been conducted on fractures for different combinations of rock type (granite or limestone), wettability (contact angle of water: 0° or 90°), and intrinsic fracture permeability (10−11 m2 or 10−10 m2) using different combinations of shear displacement (0 or 1 mm) and effective confining stress (1 or 40 MPa). It has been demonstrated that nonwetting phase relative permeability depends on capillary pressure, except at either a higher contact angle or higher intrinsic permeability (i.e., bigger aperture), where no influence of capillarity is expected from the Young‐Laplace equation. In the absence of an influence of capillarity, relations between wetting and nonwetting phase relative permeabilities agree with that of the X‐type relative permeability curves. In order to determine the relative permeability curves under the influence of capillarity, the experimental results have been analyzed by two‐phase flow simulations of the aperture distributions of the fractures. It has been revealed that nonwetting phase relative permeability becomes zero, even at a small wetting phase saturation of approximately 0.3, while wetting phase relative permeability exhibits Corey‐type behavior, resulting in ν‐shaped relative permeability curves. Similar curves have been reported in the literature, but have not been demonstrated for real fractures. It has been revealed that the new ν‐type and traditional X‐type relative permeability curves are appropriate for describing two‐phase flows through subsurface fractures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call