Abstract
For the energy transition to succeed, the growing amount of solar and wind power need to be stored for night-time or low-wind periods. Redox flow storage offers a good way of balancing out the fluctuations in renewable energies and is considered a promising energy storage system because it is potentially inexpensive and relatively easy to scale. However, the costs are still too high for this technology to be a resounding success. New manufacturing and joining technologies can help here. This will be demonstrated using the central element of the redox flow battery, the stack, as an example. Here, novel bonding ideas will be investigated and explained. The aim was to improve the contact between the gas diffusion fleece on the active side of the bipolar half plates and the current collector on the bipolar edge plates. A media and temperature-resistant adhesive was tested and tried out in different geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering Technologies and Management Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.