Abstract

On-chip caches of graphics processing units (GPUs) have contributed to improved GPU performance by reducing long memory access latency. However, cache efficiency remains low despite the facts that recent GPUs have considerably mitigated the bottleneck problem of L1 data cache. Although the cache miss rate is a reasonable metric for cache efficiency, it is not necessarily proportional to GPU performance. In this study, we introduce a second key determinant to overcome the problem of predicting the performance gains from L1 data cache based on the assumption that miss rate only is not accurate. The proposed technique estimates the benefits of the cache by measuring the balance between cache efficiency and throughput. The throughput of the cache is predicted based on the warp occupancy information in the warp pool. Then, the warp occupancy is used for a second bypass phase when workloads show an ambiguous miss rate. In our proposed architecture, the L1 data cache is turned off for a long period when the warp occupancy is not high. Our two-level bypassing technique can be applied to recent GPU models and improves the performance by 6% on average compared to the architecture without bypassing. Moreover, it outperforms the conventional bottleneck-based bypassing techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.