Abstract

Several nonlinear proportional-integral-derivative (PID) controllers for robot manipulators that ensure global asymptotic stability have been proposed in the literature. However, the tuning criteria obtained are expressed in terms of conditions so restrictive that they have avoided, until now, carrying out experimental tests with such controllers. Tuning criteria of some PID controllers for robot manipulators with conditions more relaxed than those presented previously in the literature have been proposed in two recent works by the authors. This was achieved by setting the tuning conditions individually for each joint instead of general conditions for the whole robot. In this paper we extend these results to a class of nonlinear PID global regulators for robot manipulators. The obtained tuning criteria are given in terms of conditions so relaxed that they have allowed to carry out, for the first time, experimental essays with these controllers. Such experiments are presented in this paper using a two-degrees-of-freedom robot manipulator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.