Abstract

The existing controllers for robot manipulators with uncertain gravitational force can globally stabilize only robot manipulators with revolute joints. The main obstacles to the global stabilization of robot manipulators with mixed revolute and prismatic joints are unboundedness of the inertia matrix and the Jacobian of the gravity vector. In this note, a class of globally stable controllers for robot manipulators with mixed revolute and prismatic joints is proposed. The global asymptotic stabilization is achieved by adding a nonlinear proportional and derivative term to the linear proportional-integral-derivative (PID) controller. By using Lyapunov's direct method, the explicit conditions on the controller parameters to ensure global asymptotic stability are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call