Abstract

In this paper, a new approach employing sliding-mode based smooth robust compensators is developed for simultaneous position and force control of an uncertain robot manipulator performing constrained tasks in the presence of environmental stick-slip friction. Under the proposed approach, the robot manipulator can exert a preset amount of force on the environment while tracking along a desired trajectory with global asymptotic stability, as proved by Lyapunov's direct method. A numerical example of a 2-link robot performing a constrained task is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.