Abstract

Raman spectroscopy is a powerful analytical technique in many areas of research for several reasons. These include the sensitivity to small structural changes, non-invasive sampling capability, minimal sample preparation, narrow line widths of Raman lines, and high spatial resolution in the case of micro-Raman spectroscopy. Advancements in lasers, spectrographs and holographic optical components have made Raman spectroscopy an effective tool for analyzing natural and synthetic materials. These advances have led to the development of both in situ Raman spectroscopy and telescopic remote Raman spectroscopy for a lander or rover for planetary exploration. A telescopic Raman spectroscopic system capable of measuring Raman spectra of minerals, inorganic and organic chemicals, and biogenic materials to radial distances in the range 10–100 m has been developed. In this work, the author reviews the current status of telescopic remote Raman spectroscopic instrumentation and examines new trends in the field of remote Raman spectroscopy and its combination with time-resolved remote laser-induced native fluorescence (LINF) and laser-induced breakdown spectroscopy (LIBS), and their applications in earth and planetary science.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call