Abstract

During tumor evolution, cancer cells can acquire the ability to proliferate, invade neighboring tissues, evade the immune system, and spread systemically. Tracking this process remains challenging, as many key events occur stochastically and over long times, which could be addressed by studying the phylogenetic relationships among cancer cells. Several lineage tracing approaches have been developed and employed in many tumor models and contexts, providing critical insights into tumor evolution. Recent advances in single-cell lineage tracing have greatly expanded the resolution, scale, and readout of lineage tracing toolkits. In this review, we provide an overview of static lineage tracing methods, and then focus on evolving lineage tracing technologies that enable reconstruction of tumor phylogenies at unprecedented resolution. We also discuss in vivo applications of these technologies to profile subclonal dynamics, quantify tumor plasticity, and track metastasis. Finally, we highlight outstanding questions and emerging technologies for building comprehensive cancer evolution roadmaps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call