Abstract
Recently, multirotor UAVs have been widely used in high-precision terrain mapping, cadastral surveys and other fields due to their low cost, flexibility, and high efficiency. Indirect georeferencing of ground control points (GCPs) is often required to obtain highly accurate topographic products such as orthoimages and digital surface models. However, in practical projects, GCPs are susceptible to anomalies caused by external factors (GCPs covered by foreign objects such as crops and cars, vandalism, etc.), resulting in a reduced availability of UAV images. The errors associated with the loss of GCPs are apparent. The widely used solution of using natural feature points as ground control points often fails to meet the high accuracy requirements. For the problem of control point anomalies, this paper innovatively presents two new methods of completing data fusion by supplementing photos via UAV at a later stage. In this study, 72 sets of experiments were set up, including three control experiments for analysis. Two parameters were used for accuracy assessment: Root Mean Square Error (RMSE) and Multiscale Model to Model Cloud Comparison (M3C2). The study shows that the two new methods can meet the reference accuracy requirements in horizontal direction and elevation direction (RMSEX = 70.40 mm, RMSEY = 53.90 mm, RMSEZ = 87.70 mm). In contrast, the natural feature points as ground control points showed poor accuracy, with RMSEX = 94.80 mm, RMSEY = 68.80 mm, and RMSEZ = 104.40 mm for the checkpoints. This research considers and solves the problems of anomalous GCPs in the photogrammetry project from a unique perspective of supplementary photography, and proposes two new methods that greatly expand the means of solving the problem. In UAV high-precision projects, they can be used as an effective means to ensure accuracy when the GCP is anomalous, which has significant potential for application promotion. Compared with previous methods, they can be applied in more scenarios and have higher compatibility and operability. These two methods can be widely applied in cadastral surveys, geomorphological surveys, heritage conservation, and other fields.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have