Abstract

Previous work [C. Shonkwiler, New computations of the superbridge index, J. Knot Theory Ramifications 29(14) (2020) 2050096] used polygonal realizations of knots to reduce the problem of computing the superbridge number of a realization to a linear programming problem, leading to new sharp upper bounds on the superbridge index of a number of knots. This work extends this technique to polygonal realizations with an odd number of edges and determines the exact superbridge index of many new knots, including the majority of the 9-crossing knots for which it was previously unknown and, for the first time, several 12-crossing knots. Interestingly, at least half of these superbridge-minimizing polygonal realizations do not minimize the stick number of the knot; these seem to be the first such examples. Appendix A gives a complete summary of what is currently known about superbridge indices of prime knots through 10 crossings and Appendix B gives all knots through 16 crossings for which the superbridge index is known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.