Abstract

Peptidylglycine monooxygenase (PHM) is essential for the biosynthesis of many neuroendocrine peptides via a copper-dependent hydroxylation of a glycine-extended pro-peptide. The "canonical" mechanism requires the transfer of two electrons from one mononuclear copper (CuH, H-site) to a second mononuclear copper (CuM, M-site) which is the site of oxygen binding and catalysis. In most crystal structures the copper centers are separated by 11 Å of disordered solvent, but recent work has established that a PHM variant H108A forms a closed conformer in the presence of citrate with a reduced Cu-Cu site separation of ~4Å. Here we report three new PHM structures where the H and M sites are separated by a longer distance of ~14 Å. Variation in Cu-Cu distance is the result of a rotation of the M subdomain about a hinge point centered on the pro199 -leu200 -ile201 triad which forms the linker between subdomains. The energetic cost of domain dynamics is likely small enough to allow free rotation of the subdomains relative to each other, adding credence to recent suggestions that an open-to-closed transition to form a binuclear oxygen binding intermediate is an essential element of catalysis. This inference would explain many experimental observations that are inconsistent with the current canonical mechanism including substrate-induced oxygen activation and isotope scrambling during the peroxide shunt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.