Abstract

Nodularia spumigena is a filamentous diazotrophic cyanobacterium that forms blooms in brackish water bodies. This cyanobacterium produces linear and cyclic peptide protease inhibitors which are thought to be part of a chemical defense against grazers. Here we show that N. spumigena produces structurally novel members of the aeruginosin family of serine protease inhibitors. Extensive chemical analyses including NMR demonstrated that the aeruginosins are comprised of an N-terminal short fatty acid chain, L-Tyr, L-Choi and L-argininal and in some cases pentose sugar. The genome of N. spumigena CCY9414 contains a compact 18-kb aeruginosin gene cluster encoding a peptide synthetase with a reductive release mechanism which offloads the aeruginosins as reactive peptide aldehydes. Analysis of the aeruginosin and spumigin gene clusters revealed two different strategies for the incorporation of N-terminal protecting carboxylic acids. These results demonstrate that strains of N. spumigena produce aeruginosins and spumigins, two families of structurally similar linear peptide aldehydes using separate peptide synthetases. The aeruginosins were chemically diverse and we found 11 structural variants in 16 strains from the Baltic Sea and Australia. Our findings broaden the known structural diversity of the aeruginosin peptide family to include peptides with rare N-terminal short chain (C2–C10) fatty acid moieties.

Highlights

  • N. spumigena is a filamentous diazotrophic cyanobacterium that forms extensive summer blooms in brackish water bodies

  • Nodularin is the end-product of a complex hybrid non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) biosynthetic pathway [5]

  • Phylogenetic analyses suggest that the spumigin gene cluster of N. spumigena and the aeruginosin gene clusters of Microcystis and Planktothrix are unrelated [8]

Read more

Summary

Introduction

N. spumigena is a filamentous diazotrophic cyanobacterium that forms extensive summer blooms in brackish water bodies. We show that N. spumigena produces new members of the aeruginosin family of protease inhibitors using extensive chemical analyses including NMR studies (Figure 1) and demonstrate that N. spumigena strains produce two classes of similar non-ribosomal peptides, aeruginosins and spumigins, simultaneously using separate peptide synthetases. The predicted substrate specificities of the AerM, AerB and AerG peptide synthetases were L-Arg, L-Tyr and Choi through comparison with other aeruginosin biosynthetic pathways (Table 2).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call