Abstract

Seven photosynthethic microbiomes were collected from field environmental samples to test their potential in polyhydroxybutyrate (PHB) and exopolysaccharides (EPS) production, both alternatives to chemical-based polymers. Microscope observations together with microbial sequence analysis revealed the microbiome enrichment in cyanobacteria after culture growth under phosphorus limitation. PHB and EPS production were studied under three culture factors (phototrophy, mixotrophy and heterotrophy) by evaluating and optimizing the effect of three parameters (organic and inorganic carbon and days under light:dark cycles) by Box-Behnken design. Results showed that optimal conditions for both biopolymers synthesis were microbiome-dependent; however, the addition of organic carbon boosted PHB production in all the tested microbiomes, producing up to 14 %dcw PHB with the addition of 1.2 g acetate·L−1 and seven days under light:dark photoperiods. The highest EPS production was 59 mg·L−1 with the addition of 1.2 g acetate·L−1 and four days under light:dark photoperiods. The methodology used is suitable for enriching microbiomes in cyanobacteria, and for testing the best conditions for bioproduct synthesis for further scale up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.