Abstract
Due to the overuse of antibiotics, the number of multidrug-resistant pathogen bacteria is rising in recent years posing a serious threat to human health. One promising alternative for treatment is the application of phage therapy using highly selective bacteriophages. Because of their selectivity, individual screens called phagograms for each patient are required to select phages from a phage library. Phagograms are mostly performed via bacterial cultivation on double layer agar plates and phage addition causing bacterial lysis. However, these assays are work-intensive and have a low ability for parallelization and automation. Hence, highly parallelizable and automatable microbioreactors in the lowest microliter scale could offer an economic solution increasing the throughput of phagograms. This paper demonstrates the applicability of a novel capillary-wave microbioreactor (cwMBR) to perform phagograms. Due to its small volume of only 7 µL and the open-droplet design, it can be easily automated and parallelized in future. Furthermore, the ability of online biomass measurement makes the cwMBR a perfect phagogram platform in the future. Herein, phagograms with E. coli and different concentrations of the phages MM02 and EASG3 were performed as proof of concept for phagograms in the cwMBR. Thereby, the cwMBR was able to measure differences in lysis kinetics of different phages. Furthermore, the phagograms were compared to those in conventional microtiter plate readers revealing the cwMBR as ideal alternative for phagograms as it combines favorable mixing conditions and a phage repellent hydrophilic glass surface with online biomass measurement in an open-droplet design for future parallelization and automation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.