Abstract

In this paper we deal with variants of traditional cases of unavailability constraints in scheduling problems. In the literature, two main approaches are usually found. In the first one, operations can be interrupted by unavailability periods and in the second one, operations cannot be interrupted. The context we consider is more general; some operations can be interrupted, the others cannot. Moreover, we assume that information can be related to operations as well as to unavailability periods. Consequently an unavailability period can make possible or not the interruption of an operation. As an application to this new problem, the single machine problem with heads and tails and the job-shop scheduling problem are tackled. All combinations of possible cases are studied and after a review of the state-of-the-art, branch-and-bound algorithms are proposed to solve these problems. Finally, computational experiments are conducted and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.