Abstract
A database search of the sequences flanking a member of rice retrotransposon RIRE7 revealed that a 298-bp sequence in the region downstream of the member is a repetitive sequence interspersed in the genome of Oryza sativa cv. Nipponbare. Most of the repetitive sequences were flanked by a direct repeat of a target-site sequence, about 14 bp in length. The consensus sequence, 293 bp in length, had no regions encoding any proteins but had sequence motifs of an internal promoter of RNA polymerase III. These indicate that the sequence is a retroposon SINE, designated OsSN1 (Oryza sativa SINE1). OsSN1 is a new rice SINE, because it has no homology with any of the three p-SINE families previously identified from rice, and because it has a stretch of A at the 3' end, unlike p-SINE and any other Gramineae SINEs which have a stretch of T at the 3' end. The Nipponbare genome was found to have many members related to OsSN1, forming two additional new SINE families (designated OsSN2 and OsSN3). OsSN2 and OsSN3 are highly homologous to the 3' and 5' regions of OsSN1, respectively. This suggests that OsSN1 has a mosaic structure, which is generated by sequence exchange (or shuffling) between ancestral OsSN2 and OsSN3. Despite the absence of homology in the 3' regions between OsSN1 (or OsSN2) and OsSN3, a sequence, 5'-TTCTC-3', is commonly present in the region preceding the A stretch at the 3' end. This sequence together with the A stretch and a stem-loop structure found in the region near the A stretch are assumed to be important for retroposition. OsSN members were present in strains of Oryza species, as were p-SINE members. Some of the members showed insertion polymorphism at the respective loci among the rice strains. p-SINE had such polymorphic members, which are useful for classification and phylogenetic analysis of various strains of Oryza species. The polymorphic members of OsSN were more frequently found than those of p-SINE, and therefore, such members are likely to be useful for extensive taxonomic and phylogenetic studies on various rice strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.