Abstract

Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is an important pest of several crops in the western hemisphere. This insect has genetically differentiated into two host-associated populations: the corn (Zea mays L.) and the rice (Oryza sativa L.) strains. The corn strain also is found in cotton (Gossypium hirsutum L.) and sorghum and the rice strain in Bermuda grass [Cynodon dactylon (L.) Pers.] and millet. In the United States and Brazil, lines from corn, rice, Bermuda grass, and millet were used to evaluate the resistance of both strains to various insecticides, and found that the corn strain is more resistant than the rice strain. However, in these studies the larvae were not genotyped. In Colombia, genotyping of fall armyworm is necessary because the rice strain also can be found in corn fields. In this work, collected larvae from corn and rice fields from Tolima (central Colombia) were genotyped and evaluated for the resistance to methomyl and lambda-cyhalothrin. We found that the rice strain does not significantly differ in resistance to methomyl compared with the corn strain but it develops tolerance more rapidly to lambda-cyhalothrin. The eggs viability of treated females also was significantly affected by methomyl on each generation. The realized heritability of resistance was higher for lambda-cyhalothrin (0.23-0.42) than for methomyl (0.04-0.14). The number of generations needed for 10-fold increase in resistance is approximately 11.5 generations for methomyl and 6.5 for lambda-cyhalothrin. Finally, the genetic basis of resistance to both insecticides involves few recessive autosomal genes. The results obtained here suggest that methomyl is a better option than lambda-cyalothin to control fall armyworm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call