Abstract
A sequence of nonnegative integers is $k$-graphic if it is the degree sequence of a $k$-uniform hypergraph. The only known characterization of $k$-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there are few conditions that imply a sequence is $k$-graphic. In light of this, we present sharp sufficient conditions for $k$-graphicality based on a sequence's length and degree sum.Kocay and Li gave a family of edge exchanges (an extension of 2-switches) that could be used to transform one realization of a 3-graphic sequence into any other realization. We extend their result to $k$-graphic sequences for all $k \geq 3$. Finally we give several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.