Abstract
Alzheimer's disease (AD) is a multifactorial pathology, responsible for neurodegenerative disorders which in more than 60% of patients evolve into dementia. Comprehension of the molecular mechanisms underlying the pathology and the development of reliable diagnostic methods have made new and more effective therapies possible. In recent years, in addition to the classic anticholinesterases (AChEs), which can control the clinical symptoms of the disease, compounds able to reduce deposits of amyloid-β (Aβ) and/or tau (τ) protein aggregates, which are disease-modifying therapeutics (DMTs), have been studied. The results have shown that symptomatic therapy works best when administered in the disease's mild to moderate clinical phase. On the other hand, treatment with DMTs has been found to be more effective in the preclinical stage of AD, when Aβ and τ protein neurofibrillary tangles have not yet been compromised and patients still have a normal quality of life. This innovative approach requires the identification of specific biomarkers predictive of the disease, detectable many years before clinical signs are evident. Biomarkers allow early diagnosis, give indications of the possible development of dementia in the future, and make it possible to study the evolution of the disease. New scenarios, involving different pathways and approaches, could emerge and provide effective therapies to treat the very early stages of the disease and hamper its progression. The specific biomarkers studied so far have been reported here.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have