Abstract

Quantum private comparison (QPC) enables two users to securely conduct private comparisons in a network characterized by mutual distrust while guaranteeing the confidentiality of their private inputs. Most previous QPC protocols were primarily used to determine the equality of private information between two users, which constrained their scalability. In this paper, we propose a QPC protocol that leverages the entanglement correlation between particles in a four-particle cluster state. This protocol can compare the information of two groups of users within one protocol execution, with each group consisting of two users. A semi-honest third party (TP), who will not deviate from the protocol execution or conspire with any participant, is involved in assisting users to achieve private comparisons. Users encode their inputs into specific angles of rotational operations performed on the received quantum sequence, which is then sent back to TP. Security analysis shows that both external attacks and insider threats are ineffective at stealing private data. Finally, we compare our protocol with some previously proposed QPC protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.