Abstract

Marine fungi are well known for their ability to produce a multitude of natural products and have been proved to be a particularly rich source of drug leads. Here, 20 pyrones and their analogs (1-20), including two new compounds (1 and 6), were obtained from a marine-derived fungus strain of Aspergillus sp. DM94. Their structures were determined by analyses of UV, IR, HR-ESI-MS, and NMR data. The ability to inhibit Helicobacter pylori in vitro was assessed for these isolated compounds. Results showed that the bis-naphtho-γ-pyrones exhibited potent antibacterial activity against both the standard and multidrug-resistant H. pylori strains. Structure-activity relationship (SAR) analysis suggested that the bis-naphtho[2,3-b]pyrones showed better anti-H. pylori activity than a hybrid of naphtho[2,3-b]pyrone and naphtho[1,2-b]pyrone. In addition, the free hydroxyl group of the C-8 position in the lower unit is vital for its anti-H. pylori activity. Importantly, compound 18 showed a synergistic effect in combination with amoxicillin, clarithromycin, or metronidazole, suggesting its potential use to overcome antibiotic resistance of H. pylori. This study shed light on the discovery of new anti-H. pylori agents. KEY POINTS: • New pyrones discovered from a marine-derived fungus Aspergillus sp. DM94. • Bis-naphtho-γ-pyrones showed potent anti-H. pylori activity. • The anti-H. pylori SAR analysis of bis-naphtho-γ-pyrones was discussed. • Bis-naphtho-γ-pyrone 18 showed synergistic effect with clinical antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call