Abstract

Alternative means for soda ash (Na2CO3) production from sodium sulfate (Na2SO4) are needed due to the intensive consumption of energy in the conventional Mirabilite-Solvay process (MSP). We demonstrate a new process to produce soda ash using sodium sulfate as a feed material. The new process relies on the antisolvent crystallization of unreacted Na2SO4 to separate it from soluble (NH4)2SO4 in a mixed monoethanolamine (MEA) and monoethylene glycol (MEG) solution. To develop the process, the solubilities of Na2SO4 and (NH4)2SO4 solids in aqueous mixed MEA-MEG solutions were first measured and then modeled using regressed paired-ion interactions from the electrolyte nonrandom two-liquid (E-NRTL) model. Anhydrous dense soda ash with a bulk density of up to 1146 kg/m3 was obtained when the concentrated Na2SO4 brines reacted with CO2 and NH3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call