Abstract

The solubility data of sodium 4-nitrotoluene-2-sulfonate (NTSNa) in aqueous organic solutions (propanol + water) and (ethylene glycol + water) were measured at temperatures ranging from (290 to 351) K using a dynamic method. The mole fraction of water in solvent mixtures ranged from 0 to 0.8. The solubility values are correlated with the electrolyte non-random two-liquid (E-NRTL) model. From the results obtained, the E-NRTL model provides a satisfactory mathematical representation of the experimental results for the (NTSNa + propanol + water) system and an unsatisfactory result for the (NTSNa + ethylene glycol + water) system. Thus, the modified Apelblat model is applied to describe the (NTSNa + ethylene glycol + water) system also. The calculated (solid + liquid) equilibrium temperatures with the modified Apelblat model are in good agreement with the experimental results. The root-mean-square deviations of solubility temperature varied from (0.08 to 0.94) K for two models. The effect of different aqueous organic solutions on the reaction of oxidation 4-nitrotoluene-2-sulfonic acid (NTS) to 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNS) was discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call