Abstract

Precision multiple roller power transmissions are investigated in this work. These chains transfer significant power and move with very high velocity. They are subjected to variable loading with strong vibration and impact components, and require forced stream lubrication. Because of these severe working conditions, chain life is limited by the fatigue, and the chain plates are the weakest elements in many cases. It is shown that fatigue life is significantly decreased by fretting action, high stress concentration in the plates, and the impossibility of maintaining a uniform force distribution across the multiple lines of a chain. The results of the performed experimental stress analysis under static and variable loading are given for the different plate geometries. The plates with a variety of stress reducers located in different areas are investigated, and theoretical and effective stress concentration factors are determined. Based on that, new plate chain designs are proposed. These new designs use fewer lines to transfer the same power as conventional chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.