Abstract
We report on a new, simple process to fabricate planar Hg<sub>1-x</sub>Cd<sub>y</sub>Te/Hg<sub>1-x</sub>Cd<sub>x</sub>Te heterostructure photodiodes with p-on-n configuration. The material used for this demonstration was a double-layer p-on-n heterostructure that was grown by a liquid-phase-epitaxy technique. The p-on-n planar devices consisted of an arsenic-doped p-type cap epilayer on top of a long-wavelength IR n-type active epilayer. The ion-beam-miling p-type conversion effect was used to delineate the active device element, and to isolate the planar device. Detailed analysis of the current characteristics of these diodes as a funciton of temperatuer, show that they have high performance, and that their dark current is diffusion-limited down to 60 K. The results show that over a wide range of cut-off wavelengths, the RoA product values are close to the theoretical limit. Light Beam Induced Current technique was used to characterize the lateral and vertical dimensions of the ion beam milling induced junction. Electro-optic properties of a 2D array of small diodes with a 40-μm pitch are presented, and demonstrate the potential of the new process for implementation of 2D arrays.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.