Abstract

Recently, pharmaceutical research has been focused on the design of new antibacterial drugs with higher selectivity towards several strains. Major issues concern the possibility to obtain compounds with fewer side effects, at the same time effectively overcoming the problem of antimicrobial resistance. Several solutions include the synthesis of new pharmacophores starting from piperazine or morpholine core units. Mass spectrometry-based techniques offer important support for the structural characterization of newly synthesized compounds to design safer and more effective drugs for various medical conditions. Here, two new piperazine derivatives and four new morpholine derivatives were synthesized and structurally characterized through a combined approach of Fourier transform-ion cyclotron resonance (FT-ICR) and Linear Trap Quadrupole (LTQ) mass spectrometry. The support of both high-resolution and low-resolution mass spectrometric data namely accurate mass measurements, isotopic distribution and MSn spectra, was crucial to confirm the success of the synthesis. These compounds were further evaluated for inhibitory activity against a total of twenty-nine Gram-positive and Gram-negative bacteria to determine the action spectrum and the antimicrobial effectiveness. Results demonstrated compounds’ antimicrobial activity against many tested bacterial species, providing an inhibitory effect linked to different chemical structure and suggesting that the new-synthesized derivatives could be considered as promising antimicrobial agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call