Abstract
Airway mucus hypersecretion is a pathophysiological feature of asthma and chronic obstructive pulmonary disease (COPD). The hypersecretion is associated with phenotypic changes in the airways, notably, increases in the number of surface epithelial goblet cells (hyperplasia) and in the size of the submucosal glands (hypertrophy). The hyperplasia and hypertrophy are associated with increased production of mucin, the gel-forming component of mucus. The excess mucus production contributes to morbidity and mortality in many patients, particularly in those with more severe disease. Although current pharmacotherapy is effective in clinical management of patients with stable asthma, severe asthma is poorly treated and there is no current drug treatment for COPD. In neither disease is there specific, effective pharmacotherapy for the hypersecretion. Consequently, identification of potential drug targets for treatment of hypersecretion in asthma and COPD is warranted. The inflammatory mediators and the associated intracellular signaling pathways underlying upregulation of mucin synthesis and development of goblet cell hyperplasia are gradually being elucidated. These include Th2 cytokines (predominantly IL-9 and IL-13), and IL-1 beta, tumor necrosis factor-alpha (TNF-alpha) and cyclooxygenase (COX)-2. IL-9 may act predominantly via calcium-activated chloride channels (CLCA), IL-13 via STAT-6 and FOXA2, TNF-alpha via NF-kappaB, and IL-1 beta via COX-2. Epidermal growth factor receptor (EGF-R) signaling and FOXA2 appear to be convergent intracellular pathways for a number of inflammatory mediators, with EGF-R upregulated in the airways of asthmatic and COPD patients. Thus, preclinical studies have clearly identified a number of intracellular signaling pathways as possible targets for pharmacotherapy of airway mucus hypersecretion in asthma and COPD. Of these, the EGF-R and Th2 cytokine pathways may have the greatest potential for inhibition of excessive mucus production. However, because these targets are so often intimately involved with different aspects of airway (and systemic) homeostasis, there is potential for development of unwanted side effects with drug intervention. Thus, translation of the promising preclinical studies to the clinic will depend on development of drug moieties with low off-target activity. This may be accomplished by maximizing airway selectivity, which may be facilitated by appropriate delivery device design.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have